Browsing Tag

MKH 8050

Audio Gear

Stereo with the Sennheiser MKH 8018

September 8, 2025
Sennheiser MKH 8018.

Introduction

The MKH 418-S stereo shotgun mic was introduced in 2003, creating – by addition of a fig 8 capsule – what was essentially a mid-side (MS) version of the popular mono MKH 416 shotgun mic. The new MKH 8018 does something similar for the MKH 8000 family of mics, although its mid mic is less directional than the MKH 8060 short shotgun and, of course, a lot less so than the longer MKH 8070. While the specs are significantly improved on the MKH 418-S, the MKH 8018 is aimed squarely at a similar market – most obviously outside sports broadcast. A few reviews have begun to appear on the mic and, rather than repeat ground covered in them, the focus on the tests for this blog post is a bit different: as usual I explore the basics (self-noise, handling noise, frequency response, resistance to RFI etc.), but the field tests focus on the performance of the MKH 8018 as a stereo mic. Above all, I am interested in how this latest take on a stereo shotgun compares to a non-shotgun mid-side pair and, for this, it seems most appropriate to test it in parallel to an MS pair of its MKH 8050 (supercardioid) and MKH 8030 (fig 8) siblings. How can the useful side rejection of a mono shotgun be reconciled with the addition of a fig 8 to create a stereo signal? Likewise, the tight focus of a shotgun mic for some sound effects can be useful, but how does a stereo version work for this? Does the inevitably more erratic (lobar) polar pattern of the shotgun mic at higher frequencies render it very much a poor cousin, or is it eminently usable? Is this mic about having that tight mono shotgun perspective, but with instant flexibility (without changing rig, or, even, making the call in the field) to have that stereo image when useful? If any of these or related questions are of interest to you too, then read on!

PS I should add that the good folks at Sennheiser sent me this MKH 8018 gratis for my unfiltered scrutiny. As usual, I play a straight bat and do my best to be objective (and, if anything, my starting point is a little scepticism about MS and, consequently, DMS with shotguns, as readers may have noticed!), and, with plenty of test WAV files to download, you can pore over my tests and draw your own conclusions. Right: onwards!

PPS It’s not the shortest blog post ever, so if you are after sound samples, stick with it: mostly they are further down.

A look at the mic and its specifications

Well, first to the mic itself. There is no great value in repeating the specifications provided on the Sennheiser website, but a few key ones jump out and merit some discussion. First, of course, is the self-noise, for which figures of 12 dBA are given for the mid (shotgun) mic capsule and 14.5 dBA for the side (fig 8) capsule. These are lower than for the MKH 418-S, for which the mid channel is 14 dBA and the side channel 22 dBA. The fig 8 self-noise improvement is very substantial, but, interestingly, the value is not the same as that for the recently introduced MKH 8030 (13 dBA). The polar pattern of the MKH 8018’s fig 8 is also much less regular than that of the MKH 8030 above 4kHz, which, with the self-noise difference, suggests a different capsule, which Sennheiser have confirmed. The shotgun mic capsule appears to be different from the MKH 8060, and, again, I have had this confirmed…

The MKH 8018 is also a lot more sensitive than the MKH 418-S: for the mid (shotgun) capsule -25 dBV vs -32 dBV; and for the fig 8 capsule -32 dBV vs -40dBV. In both cases, in actual use the substantial difference between the sensitivity of the mid and side channels is then amplified by the fact that the side channel usually gets a much lower signal. In practice I have run 7dB more gain on the side channel in the field with the MKH 8018, to get the capsules up to matching sensitivity, but that’s not always easy with some mixer/recorders with MS linking. And while the MKH 8018 shotgun capsule has quite a hot output, it isn’t unusually so: for example, the MKH 8060 is 1 dBV hotter at -24 dBV.

Thinking about the sensititivies of the two channels leads to another key difference between the MKH 8018 and the MKH 418-S: while the latter outputs the M and S signals only, the MKH 8018 can switch between this option, ‘narrow-XY’ and ‘wide-XY’. No information is given as to the ratio of M to S in the two decoded LR stereo outputs and, while I am sure that they will prove useful to some not familiar or unable to work with the M and S outputs, for all my testing and use I have had the mic set in its MS output mode: I like to know what I am doing!

Turning to the physical appearance of the mic itself, all is exactly described and illustrated on the Sennheiser website. The one thing that wasn’t clear from that was the position of the capsules within the mic, so the first thing I did on opening the box was to hold the mic up to the light to try to see what is going on.

Back-lit view of the slotted tube part of the MKH 8018, showing the three sections: that on the right (i.e. rear) contains the fig 8 capsule with the mid mic capsule then adjoining (to its left); and the two left-hand slotted sections are the actual interference tube of the (shotgun) mid mic, which measures 82mm in length. The internal circular openings can be seen – along with the tight mesh – behind the slots.

Capsules and polar patterns

Polar patterns vary much more across the broad category of shotgun mics than across the individual types of first-order mics (omni, cardioid, supercardioid, hypercardioid, fig 8 etc.). Shotgun mics also have a much more variable polar plot at different frequencies than mics with no interference tube. For example, a shotgun mic might have a similar acceptance angle (signal no more than 3dB down on the on-axis signal) as a hypercardioid (i.e. 105°) up until 1-2kHz, before narrowing (i.e. getting more directional) above that to, say, 25° at 16kHz. So the simple distance factor (i.e. the distance at which the mics get the same direct-to-diffuse field ratio) that can be described for omni mics through to fig 8s has no immediate application to shotgun mics: you will read of ‘typical’ distance factors for shotgun mics of 2 to 3 (with an omni being 1.00, a cardioid being 1.73 and a supercardioid being 1.90), but, clearly, this is a crude approximation given the change in directivity with frequency. Adding to the variables in design (inc. length) of the interference tube and capsule, multi-capsule shotguns also change how the mics reject off-axis sound. The polar pattern (with its particular frequency dependent variation), therefore, has a much more significant role in determining which model of shotgun mic a sound recordist will choose for any given type of recording situation. That doesn’t mean, of course, that the published polar patterns are what a recordist uses to make such choices: an experienced sound recordist will usually base that on how they have heard different microphones perform in use in a range of situations.

MKH 8018 shotgun (mid mic) capsule polar pattern.
MKH 8060 shotgun mic polar pattern.
MKH 8050 supercardioid polar pattern.

Nonetheless, a polar plot, especially if not overly smoothed, contains useful information for a shotgun mic, and it certainly gives an immediate insight into the MKH 8018. This shows that at lower frequencies, up to 1kHz, the MKH 8018 mid mic has a very slightly wider pattern than the MKH 8060, and, indeed, fractionally more so than the supercardioid MKH 8050, but with a much smaller rear lobe than either. Above that there is more divergence: by 2kHz the MKH 8060 has a significantly tighter pattern and this increases with frequency, along with a less noticeable rear lobe. The MKH 8018 and MKH 8050 remain very similar up to 4kHz, but, thereafter, the MKH 8018 gets more directional, as you would expect. As with all polar plots for interference tube mics, by 8kHz that for the MKH 8018 shows erratic, or lobar, form, but the response from a sine wave at a specific frequency is very hard to translate to use: this is where listening to the mic is critical. Hopefully the various test files in this blog post will help, but there’s no substitute to testing for yourself, especially when comparing to a mic known to you.

Composite image to show the MKH 8018’s fig 8 capsule behind the fairly opaque fine mesh: it was a little tricky, but some lighting from above and then below, coupled with careful focusing, reveals something of the fig 8 capsule within the mic.

Turning to the fig 8 capsule, as I said in the introduction, its specs are similar but not identical to that of the new MKH 8030. I am loathe to take the new MKH 8018 apart, but, despite the fine mesh of the mic, careful lighting shows the position and appearance of the capsule. It is positioned (to the rear of the shotgun mid mic capsule, obviously) so that it is centred on the seventh slot from the end of the interference tube (so 12.5mm from the solid part of the mic body), and its appearance is very close to that of the MKH 8030, with a similar stainless-steel filter over the usual MKH symmetrical push-pull single diaphragm, and a brass tensioning ring around it that looks identical to that of the MKH 8030 apart from the mount detail, which, in this case, widens for the fixings at both ends (one end joining to the mid mic capsule). Unlike the MKH 418-S the fig 8 capsule (KS-16-3) does not sit in an oblong block, but, rather, has a rounded tension ring. It appears that, like the MKH 8030, the fig 8 in the MKH 8018 has a16mm-diameter diaphragm, but that is based on a visual estimate compared to the overall mic diameter (22mm). It is a little surprising, given the visual similarity of the MKH 8030 and MKH 8018 fig 8 capsules, that they don’t have identical specs, although in the case of the difference in polar patterns it is unclear whether this relates at all to, in the case of the MKH 8018, the mounting between the preamp and the mid mic capsule (given the nulls it is hard to imagine why this should be so), or indeed the less open slotted tube and close mesh that continues across the fig 8 part of the MKH 8018 vs the more open design and open weave mesh of the MKH 8030. Here are the comparative polar patterns:

MKH 8018 fig 8 capsule polar pattern.
MKH 8030 polar pattern.

The different presentation (90-degree rotation and split vs continuous circles) of the two polar patterns doesn’t disguise the fact that they are quite different, with significant irregularities from 2-4kHz upward in the MKH 8018.

Frequency response

The frequency response curves and sensitivity measurements supplied with (and for) the MKH 8018 example tested here.

Like the MKH 8060 and MKH 8070 shotgun mics the MKH 8018 also has a more limited frequency range than the rest of the MKH 8000 mics. The published figures for the latter are all 30 Hz to 50 kHz, apart from the omni MKH 8020, which has a published range of 10 Hz to 60 kHz. The frequency range given for the MKH 8018 is 40 Hz to 20 kHz, but looking at the plots above you can see that the fig 8 side mic is shown as having much less low end: fig 8 mics are often a little bass-shy compared to other polar patterns, although this shows a steeper fall-off than with the MKH 8030. As discussed in previous posts, an extended high-frequency response might seem entirely academic outside those recording at high sample rates and pitching down in post (e.g. for bat recordings, or for sound effects), but there are those that argue frequency response over 20kHz is important for high-resolution recording (such as David Blackmer of Earthworks mics in this article). But quoted figures of themselves do not tell the whole story (for example the extended high-frequency capabilities of the first-order MKH 8000 mics comes with a sharp rise in self-noise, which can be problematic for very quiet sounds), so for a field test, I again thought the overtones of some church bells would be an interesting sample, so up I clambered to the belfry at Norwich Cathedral.

Up in the massive early 12th-century cathedral belfry, where the the bells and bell frame seem small by comparison.

For the recording I set up the MKH 8018 and an MKH 8050 + MKH 8030 MS pair in separate Mini-ALTO windshields (there was a breeze inside the belfry) facing the bell-frame. Such a loud sound really brings home the sensitivity of the mid (shotgun) capsule: 20 dB gain was pushing my luck! Here are the 96 kHz sound files:

And here is a spectrogram of part of the recording, showing the chimes. The higher-frequency capability of the MKH 8030 and MKH 8050 are evident with much stronger signals up to 48kHz (the limit on this spectrogram), but, equally, so is the much greater self-noise of these mics from just below 20 kHz and upwards compared to the MKH 8018 (see below for more on self-noise). And while the latter might only be quoted as having a frequency-range up to 20 kHz, like many similarly specified mics there is no abrupt cut-off at this point and there is plenty of signal above this frequency.

Spectrogram of the bells tolling midday, from let to right: MKH 8018 mid mic, MKH 8018 side mic, MKH 8050 mid mic, and MKH 8030 side mic. The vertical axis extends to 48kHz.

Turning to the other end of the spectrum, I set up the MKH 8018 and the MKH 8050 + MKH 8030 pair aimed at the exhaust pipe of the rear of a parked car (with the engine running needless to say!). Here are short clips from the recording, which include a little gentle revving:

And here are the spectrum analyzer visualizations:

MKH 8018 mid (shotgun) mic capsule.
MKH 8050 supercardioid.
MKH 8018 side (fig 8) mic capsule.
MKH 8030 fig 8.

The tracks show all four capsules capable of rendering the lowest fundamental, which was around 26.5Hz, although, of course, the fig 8s show a lot less of the low-end of the engine: this is partly since the exhaust pipe itself was centred on their nulls and partly since fig 8s inherently have a poorer low-frequency response. What is more interesting is that, compared to their MKH 8050 + MKH 8030 counterparts, both MKH 8018 capsules have a greater low-frequency output down to around 50Hz, but a lower output at the 26.5Hz fundamental and then fall away quickly below that. It is comparable to using an MZF 8000 ii filter module on the modular MKH 8000 mics, with its permanent low-cut filter of –3 dB @ 16 Hz, 18 dB/oct: indeed, the comparison is especially valid (and I assume a design intention) since both the MZF 8000 ii filter module and the MKH 8018 have a switchable low-cut filter of -3 dB @ 70 Hz. So without use of the switchable low-cut filter, the MKH 8018 seems to have a steep roll-off of the very low frequencies likely to arise from handling noise (and the inevitable resonant frequency of a mic suspension); and then the option to roll-off more (often not optional in many shotgun mics) at a higher frequency to reduce wind noise, traffic rumble and, even, higher-frequency handling issues. In short, the design allows the MKH 8018 to be used where many a shotgun mic would struggle for lack of low-frequency response, yet is designed with handling in mind and has the option to roll off more low-end in keeping with many a shotgun mic: and the response of the two capsules is consistent in this regard.

Self-noise

The 12 dB-A self-noise figure for the MKH 8018 shotgun mic capsule is respectable for a shotgun mic and as we have seen it is an improvement on the mid mic in the MKH 418-S stereo shotgun (14 dB-A), and only a little higher than the figure for the MKH 8060 shotgun mic (11 db-A). And, while the side mic capsule of the MKH 8018 might have a little more self -noise than the MKH 8030 fig 8 (14.5 dB-A vs 13 dB-A) that is still very good for an SDC fig 8 and radically better than that in the MKH 418-S. But specs of self-noise are one thing and how they sound can be quite another: a single figure doesn’t tell the whole story. So on to some tests…

First off, I checked that the manufacturer’s sensitivity figures were broadly correct, recording a 1kHz tone and measuring that with a tight band-pass filter applied at 1kHz: all was evidently in order at least in relative terms (I compared the two MKH 8018 capsules to an MKH 8030 and an MKH 8050 [also 13dB-A], getting a maximum deviation of 0.8 dBV from the published specs). So, in the absence of an anechoic chamber, I then did my usual recording the sound of nothing with the mics buried deep in duvets in the airing cupboard, with all doors and windows closed and the mains electricity turned off, recording with each mic at 76dB gain (the max of a Sound Devices 788T). Also as usual, to remove any low-frequency sound still permeating, I applied a 100Hz high-pass filter, and, in my DAW, added further gain to match the three less sensitive capsules with the sensitivity of the MKH 8018’s mid mic (the hottest of the four capsules). Normally, I wouldn’t bother including the sound of madly cranked-up mic hiss in a test/review (total gain for the MKH 8050, for example, being 85 dB), but in this case it is quite interesting to compare the different capsules. And, as I have cautioned in the past, don’t panic: all the mics are very quiet in normal use!

And here are the spectrum analyzer visualizations of the noise:

MKH 8018 mid (shotgun) mic capsule.
MKH 8050 supercardioid.
MKH 8018 side (fig 8) mic capsule.
MKH 8030 fig 8.

The sound files and the spectrum analyzer visualizations show that the two MKH 8018 capsules are quite different in terms of self-noise from the MKH 8050 and MKH 8030. The more limited ultra-sonic capabilities mean that the MKH 8018 is not tuned like its first-order siblings, where steeply rising self-noise towards 20kHz continues to rise to 48kHz. With the MKH 8018, the rise in self-noise in both capsules starts lower and is less steep, and then flattens off after 20kHz. This lower and more gradual rise in self-noise means that the character of the self-noise is quite different in the audible spectrum: self-noise in the MKH 8018 capsules is characterized by more of a high-frequency hiss (say in the 6-12kHz region) very evident to my ageing ears and, obviously, much more so to younger ears. Thinking of younger ears, extreme high-frequency hiss in the MKH 8030 and MKH 8050 will become more discernible to them in the 12-20kHz region as the self-noise in these mics rises to match or exceed that of the MKH 8018 capsules. But, I must reiterate, while interesting to compare and to note for reference, these tests are at extreme gains and so unless recording a watch ticking or other very quiet sound effects, self-noise will not be an issue with any of these mics in most use case. And for an extreme example – relevant to sound design and effects – I slowed down the cathedral bells recording included above to a quarter of its speed, bringing down the pitch accordingly (i.e. by two octaves), and yet no hiss is discernible even in the quiet sections unless gain is cranked up to levels that mean the chimes would destroy your speakers and ears! If interested, do have a play with the downloadable files yourself.

RFI

Looking at radio frequency interference (RFI) on the MKH 8018 is nothing to do with its RF design (which, in the words of the MKH designer Manfred Hibbing in his The MKH Story white paper), means the mic essentially has ‘a transmitter and receiver that are directly wired together’), but is about its resistance to external RFI. As I’ve said in posts on other tests, I am interested in the impact of RFI on mics since, as living in rural Norfolk, much of my life is outside or on the edge of mobile phone reception, where some models of phones transmitting at full power can cause notable interference on mics at up to, say 1m/3ft: not a problem with mics on a stand, but I’ve had this become a real issue with handheld shotgun mics and a phone in my jacket pocket (on those rare occasions when I forget to turn my phone off). And this could be a problem with ENG work too (not least from the phone of an interviewee). So I was glad to find that in testing, as before, with several different phones on the absolute fringe of reception (i.e. working at highest power) the MKH 8018, like its MKH 8000 siblings, showed no sign of RFI even at close distances (100mm): for control I recorded the mic alongside a known problem mic (to check that the intermittent issue was occurring: it was) .

Handling noise

While the MKH 8018 might well see much use mounted on stands (e.g. for line-side recording of sports), it will become a regular fixture in windshields on boom poles or on a pistol grip, whether being used as a mono mic for dialogue or ENG, or in stereo for those times when a bit of ambience is required during production sound recording, or perhaps to get closer to a difficult to access source during field recording. So with that in mind, I put the mic through some boom-pole handling tests, mounting them in Radius Windhsields RAD-2 mounts on a short stereo bar on the end of the boom pole to allow comparison. Gain levels were adjusted for relative sensitivities.

When holding the boom pole statically (extended and horizontally) all four capsules mics showed some handling noise, with the MKH 8050 and MKH 8030 being the most significant, both peaking around 24dB higher than the two MKH 8018 capsules: admittedly the MKH 8050 and MKH 8030 were peaking below 20Hz. This pattern applied across other boom-pole handling tests: rough handling and tapping/thumping the end. To a significant degree – not least given the apparent similarity of the two fig 8 capsule designs – this is doubtless a consequence of the EQ built into the different mics with, as we have seen, the MKH 8018 bass response being very much rolled-off below, say, 50Hz and, especially, below 25Hz. But, equally, there is no denying that the MKH 8018 has handling noise extremely well controlled even without the use of its switchable 70Hz high-pass filter or any such additional, or alternative, filtering in the recorder/mixer or in post.

MKH 8018 mid (shotgun) mic capsule: handling noise test. Note 2kHz upper limit for the spectrum analyzer visualizations showing handling noise.
MKH 8018 side (fig 8) mic capsule: handling noise test.
MKH 8050 supercardioid: handling noise test.
MKH 8030 fig 8: handling noise test.

Wind noise

To get a base line I used a double rig of the MKH 8018 and MKH 8050 + MKH 8030 on a stereo bar and boom pole. Fast boom swings were made to generate wind noise in a controlled fashion. Swinging the bare mics produced overwhelming rumble, as would be expected. The two fig 8s were fairly similar, although the MKH 8030 naturally showed a little more noise at low frequencies (say, below 30Hz). The shotgun mid mic was by far the least susceptible to what was a laminar stream of wind, and the MKH 8050, perhaps surprisingly for some, was by far the most susceptible to wind noise in these conditions. Of course, such use is unrealistic: even with a modest amount of boom movement indoors (or the gentlest air movement around a static mic indoors) at the very least a foam windshield would be used. Matching foams between the mics isn’t that easy, so for the next test I stepped up to bare windshields (i.e. sans fur), using Radius Windshields Mini-ALTOs for both. In tests with the windshields side on and into the wind (again, wide arcs from a boom swing), both capsules in the MKH 8018 performed about 3dB better than their MKH 8050 and MKH 8030 counterparts, and, as expected, lacked the very low-end (sub 30Hz) component: given the testing with a boom, this may well have been as much to do with handling noise as wind. I think another round of spectrum analyzer visualization or even WAV files wouldn’t add anything much to this description, so I will spare you those. Suffice it to say, such limited bare and windshield tests, show that the MKH 8018 is not oddly susceptible to wind (and, goodness, you wouldn’t expect it to be!) and, as you will hear from the samples below, this is further borne out by use in the field.

The MKH 8018 and an MKH 8050 + MKH 8050 MS pair on the beach on a grey English summer’s day in a pair of Mini-ALTOs.

Out in the field

A shotgun mic, of course, is primarily designed for outdoor use (OK, for large movie sound stages too), given that reflections are the enemy of interference tube designs. So to test the mic in its natural habitat, I put it through its paces recording a fairly wide range of sources outside. Many of these require it to be compared to something else, naturally, or we have no reference, and for most of the tests I have compared the MKH 8018 to an MKH 8050 and MKH 8030 MS pair: the supercardioid MKH 8050 being the most directional MKH 8000 non-shotgun mic (i.e. without an interference tube). Of course a supercardioid mid mic might well not be ideal for MS either in many situations, but you can refer to my recent tests of the MS pairs with the whole range of MKH 8000 SDC mics (i.e. MKH 8020 omni, MKH 8090 wide cardioid, MKH 8040 cardioid and the MKH 8050) if you are unsure of the differences.

First off, I headed to the beach on what I thought was a calm August day, but which turned out to be a brisk on-shore wind. Here are the two recordings facing straight out to sea:

Retreating a bit from the shoreline and the incoming tide to shelter behind the fishermen’s gear, I recorded myself walking on the shingle in a 360 circle around the mics, starting and finishing directly on axis:

Finally, for the seaside recordings, here’s a closer-up effect, recording the scooping up and dropping of shingle right by the mics:

Back to the same spot I have often been for test recordings, lineside at Holt station, as, yet again, a visiting Grange class locomotive pulls the train towards Sheringham.

Moving inland, I headed for one of my old test haunts at the North Norfolk Railway. Sadly, both the stationmaster and the signalmen recognized me so I had to take the assumption that I am an uber trainspotter on the chin: to deny it would have seemed as if I doth protest too much and, besides, testing mics is arguably an even more suspect activity! Next thing I will be calling a drink a ‘beverage’: it’s a slippery slope… Anyway, here is a three-clip recording of a steam train pulling into Holt station, then after a momentary gap, the signal box bell ringing and then, after another brief silence, the train pulling out. No editing other than the obvious cutting to produce the three parts to the recording:

Scything a rather overgrown field. Easier watching the hard work…

Back outside again, I popped over to my friend Rob’s new field (yes. that’s the same Rob who TIG welds the Mega-Blimps!), where he was sycthing or, as he put it, hacking away with a scythe to return the meadow to some order. Doubtless he will crack and get a tractor on it, but in the meantime here’s a pair of recordings of him sharpening the scythe:

And then a bit of scything/hacking at the nettles. I stood rather behind Rob and to the right so as to avoid him slicing through my rather nice and expensive MS cables.

A little bit of music

After all that fresh air I thought I would head inside for an indoor music test, slightly inspired by the well-known use of the Sennheiser MKH 4018-S for the NPR Tiny Desk concerts (although it has been increasingly supplemented by other mics over the years). So I popped down to woodcarver Luke Chapman’s workshop, which I often use: it has a surprisingly good acoustic. Luke obliged yet again (he must be sick of all these tests!) with guitar, working away on a new composition. Here is a video showing the recording with the MKH 8018 compared to an MS pair (again the MKH 8050 and MKH 8030):

Conclusions

This brief introduction to stereo use of the MKH 8018 has covered a bit of ground, from some discussion and tests of the salient aspects of interest from the specs to some tests in use. There are many uses I haven’t included here, partly reflecting my own interests (for example, I’m not in the business of recording sports events, so that’s for someone else to test!) and partly what is practical within a single blog post. One aspect I haven’t addressed is how the MKH 8018 compares to alternatives as a mono shotgun. For some this may well be a determining consideration for buying the mic: in other words, would the MKH 8018 meet their main needs as a mono shotgun mic, whilst providing a stereo option at all times for those occasions where it might prove useful? That is really hard to address, since comparing mono shotguns is not easy, as different sound recordists – especially experienced production sound mixers – will usually need to compare mics directly in use to see whether the nuances of any particular mic means that it suits their use. And, of course, there are many shotgun mics out there. But, that said, I may return to the MKH 8018 to explore the mono shotgun capability in a comparison with its nearest sibling – the MKH 8060: but don’t hold me to it! At the other end of the spectrum, I did think of including results of testing the MKH 8018 as part of a DMS rig here, but haven’t done so for reasons of not wanting to make an overly long post any longer and, also, since the efficacy of any mid mic in a DMS rig is very much apparent from its use in an MS pair. But, again, I may well return to this in a specific post: not least it might be helpful for some to hear the results of using different polar patterns for the rear-facing mid mic (e.g. just what balances a shotgun mic forward facing mid mic best: an MKH 8090 wide cardioid or an MKH 8040 cardioid?).

Anyway, returning to the ground that is covered in this post, drawing conclusions is as much something for the reader as it is for me: my aim was to explore the different in performance between the MKH 8018 in stereo use and an MS pair comprising its most directional non-shotgun sibling – the MKH 8050 supercardioid – and the MKH 8030. Given the better polar pattern and placement (i.e. above, not behind the mid mic capsule) of the fig 8 in the latter, and the more consistent off-axis performance of the supercardioid, its better performance for stereo is entirely expected and is evident in the various recordings. My aim wasn’t to demonstrate this and, as Basil Fawlty would say, get myself on Mastermind with the ‘special subject of the bleedin’ obvious’, but, rather to try and get a sense of the degree of difference. For some users and, indeed, for some uses, it may be vast: for others, and for other uses, the sonic differences may be too subtle and outweighed by other features of the MKH 8018: its usefulness as a mono-shotgun, its simplicity as a single mic vs rigging an MS pair, its ability to be both a shotgun mic and, say, an ambient pair without changing to (let alone buying) a second MS pair, its resilience to handling noise, its inbuilt pad and high-pass filters, and, even, its cost (less than the combined cost of an MKH 8050 supercardioid, or other mid mic, and the MKH 8030). Hopefully this blog post will help some when balancing all these factors. One major obstacle – the significant self-noise of the MKH 418-S – has been removed with Sennheiser’s new stereo mic, and this is hugely welcome. And if you have been humming and hawing about a stereo shotgun mic (including, the slightly noisier and sans RF technology, Sanken CSM 50, Neumann RSM 191, and the Audio Technica BP4027 and BP4029, as well as Sennheiser’s own MKH 418-S), the MKH 8018 is definitely one to get hold of (if you can!) and test for yourself. I’ve been very pleasantly surprised!

Postscript: wind protection for the MKH 8018

There’s nothing difficult in terms of rigging the MKH 8018 for outdoors (the supplied foam, of course, only being suitable for indoor use): it will fit many a windshield from the usual suspects. I note that Cinela have already got a Pianissimo model to fit (and do remember that the Cinela mono models can often be less expensive than you might expect), and a Rycote Modular 4 or a Rode Blimp would work fine. Here, I have tested the mic in a Rycote Cyclone medium, and much of my concern about using the Cyclones for MS rigs is allayed in this instance: the side lobes of the fig 8 capsule do not aim squarely at the thick plastic ring of this windshield, with evident colouration problems, as I have found with MKH 8030-based MS and DMS rigs in the small Cyclone. But the result is far from compact, so for my field tests with the mic I used the new Mini-ALTO 250 from Radius Windshields: they have been expanding their range of Mini-ALTO sizes and this fits perfectly, and I had no problems with wind noise in the admittedly not overly windy conditions of this English summer. And when not lugging two rigs for comparative purposes, I’ve enjoyed the fact that I can fit the MKH 8018 in the Mini-ALTO 250 in its fur, along with a field recorder, headphones, cable, camera etc. all in my little Think Tank Retrospective 7 bag that I like to use for field recording (yes, I know, I know: this is ironic from the creator of the Mega-Blimp!). For the cable I used an excellent low-profile XLR5F to XLR5M stereo cable, made with super-light and flexible Mogami 2739, which really keeps cable-borne noise to a minimum: critical if booming or use the mic on a pistol grip. This was made by Ed at ETK Cables.

Audio Gear Audio Projects

MKH 8030 pair: a Blumlein variation for singer-guitarist Greg Brice

September 23, 2024

Blues singer and musician, Greg Brice, was up from the Cotswolds to Norfolk for a gig, and while he was here we headed over to the workshop of Luke Chapman (woodcarver and a blues musician too) to record and film a couple of songs. Greg is an up-and-coming musician, which is reflected in his three nominations in the 2023 UK Blues Awards: he was a finalist in the ‘Emerging Act of the Year’ category. The workshop, which was formerly a farm dairy, is decidedly not a music studio, but with a recent album out that wasn’t the aim. Rather we wanted to capture a couple of live acoustic recordings on location. As sharp-eyed readers of this blog may have noticed, the workshop is somewhere I have used before for recording, sometimes for mic tests and sometimes for more full-fledged recordings. In fact, Luke and I are thinking of getting many more musicians to record there in a kind of down-home NPR Tiny Desk Concert meets Gems on VHS series, but with extra sawdust on the side. So Greg was the first, and hopefully not the last, of the new ‘Milk, Wood and Dust’ sessions.

Close-up of the three-mic array, showing the angled capsules of the side-by-side MKH 8030 fig 8 mics.

The usual problem when recording a singing guitarist is to get good separation between the instrument and the vocals (to allow different tweaking of levels and other processing later), without resorting to recording them separately: overdubbing often results in a less than fluid performance. When I recorded singer-songwriter Lucy Grubb in the workshop last year, I went for a variation on double mid-side recording, with two mid mics facing forward: one upward to her mouth and one downward to her guitar, with the nulls of the mic polar patterns reducing spill effectively. It is a simple set up that also has the merit of being less visually intrusive than an LDC right in the singer’s face. There is a Sound on Sound article by Hugh Robjohns from a few years ago that discusses and illustrates the approach. It’s a bit of a clunky set up, however, and the stereo vocal seems a bit unnecessary (and potentially problematic as singers often move their heads about), so I have been thinking about another technique also making good use of the deep nulls of fig 8 mics, but aiming to get a stereo recording of the guitar and the voice in mono.

What I came up with as a solution was a Blumlein pair of fig 8 SDC mics (in this case the excellent new Sennheiser MKH 8030, which I have been testing in various blog posts: see here for part 1), combined with a super-cardioid for the vocals (I went with a Sennheiser MKH 8050). To keep it compact I placed the two fig 8s side-by-side instead of in the more usual end-to-end arrangement: now some theorists will break out in a cold sweat and say this isn’t Blumlein, but the reality is that, with capsules only at 23mm centres, the very slight non-coincidence has little impact (and, of course, is nothing compared to the spacing in near coincident pairs, such as the Gerzon array, ORTF and NOS). Equally, a bit of shadowing of the rear lobes is no big deal as they are only capturing a little uncorrelated reflected sound from distant walls. With the super-cardioid mic placed on top, the tight cluster (which I placed in a single shockmount: a Rycote InVision USM-L) was positioned around chest height and angled so this pointed upwards for vocals, with the Blumlein pair then angled down towards the guitar. This left the nulls of the fig 8s and the super-cardioid to do their work and minimize bleed from guitar to vocals and vice versa: and any bleed left was coincident and consequently sans phase issues. Now, it may well be that others have used this approach before, but I can’t find any reference to it: I wonder if this reflects that it is best suited to SDC mics and many will not have more than one SDC fig 8, if that.

I did a few tests beforehand and was happy with how the array sounded, so when Greg came over to the workshop I put it into action. Set up was easy, with the mics fairly close (the acoustic of the workshop is OK – and certainly without a ‘small room’ sound – but it isn’t the Wigmore Hall), but distant enough and off-axis so that no pop filter or foam was required for vocals, which would rather have worked against the minimalist approach. I was pleased with the results (and so was Greg), and see this as a discreet and quick to deploy array (I had the mics ready to roll in the shock-mount already), which will really suit more singer-songwriters down in the workshop or, indeed, similar recordings elsewhere on location. Have a listen and, if you think there is any merit and you have a pair of SDC fig 8s, perhaps give it a try.

Audio Gear

Sennheiser MKH 8030 part 3: mid-side field recordings

April 6, 2024
Squeezing four mics into a blimp suspension for mid-side testing. Top to bottom: MKH 8040 (cardioid), MKH 8030 (fig 8), MKH 8020 (omni: right), and MKH 8050 (supercardioid: left). The acoustic shadowing (which is inevitable to some extent in coincident pairs) of this cluster of mics near each other has very little effect in reality, and is largely a concern of the theoreticians out there: much more important is the ability to be able to compare different flavours of mid-side recording at the same time. Despite some snazzier options, my old Rode Mk 1 blimp again proved the best bet for accommodating such a number of mics.

Introduction

Part 2 of the Sennheiser MKH 8030 (fig 8) tests involved recording a bluegrass band with a mid-side set-up, focused on the Sennheiser MKH 8040 (cardioid) and MKH 8030 pair, but including the Rycote BD-10 (fig 8) and CA-08 (cardioid) mics. For the next series of tests I was keen to hear how the MKH 8030 sounded with other mics from the MKH 8000 series in a mid-side pair. There are, of course, five other mics in the series, ranging from omni to long shotgun, but, to make things manageable, I wanted to focus on three mid-mic options: the MKH 8020 (omni), the MKH 8040 (cardioid) and the MKH 8050 (supercardioid). The MKH 8090 (wide cardioid) has much to commend it for a mid mic, but I suspected that the difference between it and the omni and cardioid mics might be a bit nuanced for my tests. Mid-side with shotgun mics is possible, of course, but it’s not something I’m hugely keen on. Besides, I needed a practical rig to be able to test different combinations at the same time, so four mics of similar size was my limit for a blimp. Similar practical matters also ruled out including mid-side with a second MKH 8030 (which would require a different orientation): that, and the fact that I don’t yet have a second MKH 8030! So tests of a fig 8 as the mid mic, and of a Blumlein pair of MKH 8030s, will have to wait until another time.

It has been very clear from the outset that the MKH 8030 is a superb fig 8 mic, condensing much of what is loved about the MKH 30 into a smaller form, so testing its performance in mid-side rigs might seem superfluous: it could be assumed that the mic will deliver excellent mid-side recordings when used with the other MKH 8000 series mics. Well, there are two angles to this: first, it’s good to check that theory and expectations are matched by reality, not least as the MKH 8000 mics are not cheap, and provide samples of this; and, second, I was intrigued by the on-line comment of another tester of the pre-production MKH 8030 mic as part of a mid-side pair, who said ‘the 8050 is too narrow and creates holes in the stereo image and other weirdness when decoding‘. This was for recording nature so narrowness may well have been an issue for desired wide ambiences, but holes and other ‘weirdness’ seemed surprising since the MKH50/MKH30 pair has long been used to good effect. And, of course, a supercardioid or hypercardioid mid-mic choice is an obvious one for production sound recordists (i.e. heavy users of mics with these polar patterns) who want the scope for a bit of mid-side stereo when the occasion arises.

So to these latest tests. Given the comment about the MKH 8050 as a mid-mic, and the previous musical test for the MKH 8030, I have this time focused on field recording – both natural and man-made sounds, and including sounds that cross the stereo field: hopefully, these will allow consideration of any holes in the centre of the stereo image, or other ‘weirdness’. In each of the samples below, the recordings are as straight off the recorder, albeit with levels adjusted in post so that the mid and side mics are mixed at a ratio of 50:50 (I recorded all four channels with the same gain) to reflect the slightly different sensitivities of the mics: i.e. MKH 8020 at -30dBV, MKH 8030 at -30.8dBV, MKH 8040 at -34dBV and MKH 8050 at -34dBV.

Mid-side test rig in blimp, recording the not-quite-as-quiet-as-you-might-think village street sounds.

‘The Deserted Village’

First up, is my old and unadventurous stalwart: mics at the front of our garden, at ninety degrees to the street in this quiet Norfolk village, with birdsong and the odd passing car or tractor.

On the shingle beach at Salthouse.

‘Sea-Fever’

Next I took the four-mic MS rig up to the coast. There was a gentle offshore wind, but the shingle beach shelves steeply, so there was some wave action nonetheless. Waves break onto the beach at different times, naturally, so the sound often moves across the stereo image. For this first series of recordings the mic stand was rather near to the sea than in the photo: it was right at the water’s edge – so much so that a couple of times I had to grab the stand and stagger backwards to avoid a clutch of Sennheiser mics taking a dip in the North Sea.

And then, while on the beach, but, say, 30ft (10m) from the water’s edge, I recorded myself walking past the mics, angled downwards a bit, again with the intention of exploring the ‘hole in the middle’.

At Holt station, on the North Norfolk Railway, set up opposite a little saddle-tank locomotive built for, and named after, the British Sugar Corporation’s factory at Wissington (near Downham Market): this is still sugar beet country.

‘At The Railway Station’

A few miles away, the season was was well and truly underway at the North Norfolk Railway, with trains bustling between Holt and Sheringham over the Easter weekend. Setting up lineside opposite a small saddle-tank locomotive, with the station platform beyond, I recorded its departure and the rattle of its carriages as it headed off backwards.

Diesel locomotive at Holt station. Nice to be at the level of the track for the clatter of the wheels, or is that bogies?

After this small train pulled out, I became very visible to anyone on the platform so perhaps it wasn’t surprising that a chap pointed me out to his toddler grandson, who in response gave a nonplussed shrug way beyond his years. With headphones, a furry blimp and a camera, I must have looked like an über-trainspotter: a fair cop perhaps, but, seeking a less conspicuous position, I moved along the fence by the lineside to a point just beyond the station. There were practical advantages of a less visible location too: chatter from those at the station was reduced, I was further from the car park, and I was next to the signal, with its occasional clunking movements. I settled down to wait for the next train, which then took me unawares as there was no whistle or chuffing to announce its arrival: it was a diesel. Well, it may have lacked the nostalgic charm of steam, but it was a different sound, so I pressed record.

‘Hercules’, a 2-8-0T from the Great Western Railway, visiting Norfolk for the season. It’s doing the whizz around the run-round loop that the locomotives do at Holt (a terminus) to get to the front of the train again for the return trip, so it hasn’t got its carriages attached at this point. The manoeuvre makes for more recording options.

Working on the principle that the locomotive types must be alternating, I waited for the next one to arrive, hoping for another steam engine and perhaps something a bit larger than the little saddle tank. Sure enough, after another 15 minutes or so, along puffed a much larger tank engine, pulling a longer train of carriages. OK, not one of the biggest locomotives on this railway, but noticeably different in sound: a lot bassier, and, as expected, this comes across especially well in the omni mid-side recording. In this case I had the mics angled at forty-five degrees towards the departing train, which, of course, sees the greater emphasis from the omni mid mic on the disappearing sound around 130 off axis..

Sennheiser MKH 8000 mics meeting half-a-dozen Easy Care sheep (yes, that has got to be the most unlikely and unattractive name for a breed of sheep, even if it describes them well!).

‘The Manor Farm’

Perhaps it was thinking about farming round here when waiting for the little sugar beet ‘Wissington’ loco to set off or perhaps it was thinking about lunch on Easter Day, but for my final set of recordings I popped over to a friend’s house to record his sheep. No lambs yet, but despite the small size of the flock they put in a good performance for the mics: it’s amazing what the appearance of a feed bucket can do. Listening back, I’m surprised at the amount of natural reverb: far from anechoic. In this case the omni mid-mic brings in some less desirable low-frequency background noise and more traffic from the road (a B road, about 120 yards/metres away), but otherwise does a good job: that said, with the principal sound sources in front of the mics, I prefer the MKH 8040 and MKH 8050 mid-mic recordings.

This becomes more obvious still in the following series of recordings: some fairly quiet chickens in their pen scrabbling around and clucking quietly, while a distant road (more line 200 yards/200 metres away) and some distant agricultural machinery (a drier of some sort I think) add some less wanted background noise that is least evident – naturally – the MKH 8050 mid-side pair. Not the most exciting field recording ever made, I know, but it illustrates the point!

Conclusions

The main purpose of this post – as with so many of the other tests – is to provide the reader with a few samples to draw their own conclusions. But, beyond that, what is crystal clear to me is that there is no oddity with the MKH 8050 and MKH 8030 mid-side combination: the pair perform exactly as one would expect – and hope – of a mid-side pair with a supercardioid mid mic.

As well as demonstrating the MKH 8030 as the side mic with a range of other MKH 8000 series polar patterns (arguably those that will be used most frequently in mid-side recording), I hope this post also provides some useful examples of the impact of the different mid-mics on the stereo field, which, of course, give rise to different virtual mic patterns: the omni mid-side pair is nominally equivalent to an XY pair of cardioid microphones oriented back-to-back (180 degrees); the cardioid mid-side pair is nominally equivalent to a pair of supercardioid (often incorrectly cited as hypercardioid) microphones at an included angle of about 130 degrees; the supercardioid mid-side pair is nominally equivalent to a pair of hypercardioid microphones at an included angle of about 120 degrees. I say nominally since the equivalent microphone patterns don’t exactly match definitions for existing microphones and sound directly in front of the pair is on axis to the mid mic and, therefore, suffers less colouration than with its XY equivalent. Normally one would make mid-mic choice before recording, giving a simple two-mic mid-side pair rather than something like the clunky and impractical four-mic rig that I used for these tests.

And these tests are, perhaps, a reminder to those not so familiar with the idea, that the mid mic need not be a cardioid. In particular, the sound samples show that an omni mid mic can be an effective choice, certainly if you want, or need, the bass response of an omni mic. For field recording in particular, it offers this bass response in a much more compact form than most spaced pairs (typically involving two windshields and a stereo bar).

Indeed, you can use a mid-side pair of the MKH 8000 series mics in a small blimp: below, for example, is an MKH 8040/MKH 8030 pair in the small Rycote Nanoshield NS1-BA, which is only 220mm long. Obviously it would be much better with purpose-built MS lyres, which I hope we will see before too long, to bring the mic pair into the centre more and, thus, make wind protection much more effective. And while not a full blimp, Cinela are promising a compact COSI windshield for an MKH 8030 mid-side pair, having demonstrated a prototype at IBC 2023. In short, small and light windshield options will be available to take advantage of the small size of the mid-side pairs, for those occasions when larger windshields – with their better wind protection – are not needed or wanted.

How small and light can you go? MKH 8040 and MKH 8030 mid-side pair in a full blimp 220mm overall length: the Rycote Nanoshield NS1-BA.