Browsing Tag

MKH 30

Audio Gear

Double mid side, part 3: comparing with native B-format

August 12, 2025
Double mid side with Schoeps CCM mics (left) and horizontal B-format with Sennheiser MKH 8000 mics (right).

In Part 1 of this three-part series of musings on double mid side (DMS), I went through the three rigging options; in Part 2 I tested the options; but in this final part, as the title says, I do something rather different, which is compare DMS to horizontal B-format (i.e. native B-format with no vertical component).

As we have seen in the previous posts, setting up DMS with side-address mid mics produces an array that looks very similar to a horizontal native B-format, or Nimbus-Halliday, array. In that case, a horizontally-oriented omni mic is flanked by vertically oriented fig 8s, one aimed forwards-backwards and one aimed sideways. In a variation of this, which I have used too, the omni can be set vertically as is one fig 8, with the second fig 8 set horizontally between the two: this variation is designed to address the directionality of the omni mic at higher frequencies in the plane of the mic body (a consequence of the mic body itself). I described and illustrated the two different horizontal B-format arrays in my pipe band recording blog posts last year. The similarity between horizontal B-format and DMS is not just that the two rigs look so alike, but also how they perform since, as Wittek et al (Wittek, H., Haut, C., and Keinath, D., Double M/S – a Surround recording technique put to test (Schoeps paper, 10.03.2010) note:

In principle, Double-M/S signals can also be converted to “horizontal B-format” by addition and subtraction:
W = Mfront+ Mrear;
X = Mfront- Mrear;
Y = S;

In this formula, the W (omni mic) is formed by combining the front and rear cardioids, and the X (forward-rearward facing fig 8) by again using the two cardioids, albeit subtracting one from the other. In that limited sense, deriving B-format from DMS is akin to deriving it from ambisonic (A-format) arrays of cardioids.

So the questions remain: if DMS and horizontal B-format are mathematically equivalent, do they sound the same and, either way, are there pros and cons for selecting either array? This, needless to say, is more complex than you might think, as it rather depends on the use of the array. For example, even if not ideal and demanding care when decoding, DMS can be used with a shotgun microphone, typically when such a narrow polar pattern is required principally as a mono mic (say for dialogue in production sound), but giving scope for flexible stereo or surround sound when needed, without changing the rig. The shotgun can be a mono mic with a fig 8 and a rear-facing cardioid clipped to it, or a stereo shotgun (i.e. with a integrated fig 8 capsule, such as the Sennheiser MKH 8018) with a rear-facing cardioid clipped to it. In this regard DMS has no equivalent in horizontal B-format in any practical sense.

Both arrays can and often are used for stereo recording: both allow mid-side recording with a variable polar pattern for the mid mic, and, indeed, steering of the stereo sound after the event. With DMS the mid mic polar pattern is created by mixing the two back-to-back cardioids, in the same way that a variable-pattern mid mic works: only the cardioid pattern is native to the mid mic. With horizontal B-format the mid mic polar pattern is created by mixing the omni mic and forward-rearward facing fig 8: this also gives you, natively (i.e. without mixing), a fig 8 mid mic and an omni mid mic. I use all three native mid mic polar patterns for MS, so wouldn’t choose between the two approaches on these grounds: besides, you may recall my previous test comparing a cardioid to a virtual cardioid created by my mixing a fig 8 and an omni, which showed little to no difference in the sound other than the more extended bass of the virtual cardioid arising from the use of the pure pressure omni. Well, at least the sound was very similar, but I do wonder, in the light of my DMS and horizontal B-format comparisons (below) whether the polar pattern was quite the same.

Comparing a cardioid MKH 8040 (top) with a virtual cardioid made by mixing a fig 8 MKH 8030 (centre) and omni MKH 8020 (bottom).

It is this extended low-frequency response that is perhaps the most distinctive difference between horizontal B-format and DMS when used for stereo. This difference is acknowledged in the Schoeps DMS plugin, however, which, as the user guide makes clear, ‘normalizes the sensitivity of the CCM 8 to match the CCM 2’s and compensates for the low frequency loss of the figure-of-eight microphone’: the CCM 8 being the fig 8, of course, and the CCM 2 being Schoeps’s flat (free-field) omni in the same CCM range.

Lineside at Holt station (getting some odd looks and banter as usual, not least from the signalmen) for a DMS vs horizontal B-format comparison, as a Grange class locomotive pulls the train towards Sheringham.

Although rigging DMS with side-address cardioids provides the most obvious physical similarity with horizontal B-format, for my test purposes comparing these two rigs isn’t ideal: the Schoeps mics for the DMS rig are quite different from my Sennheiser mics for the horizontal B-format set-up. In my initial tests with these two rigs, I felt I was more demonstrating the difference between the mics than comparing the different configurations. Using end-address cardioids opens up more options, but, without three MKH 8030 fig 8s here (yet!), the best I can manage is DMS with two MKH 8040s and one MKH 30 vs horizontal B-format with two MKH 8030s and one MKH 8020. The MKH 8030 and MKH 30 are not identical, but, as we have seen before, they are fairly close. So with these two rigs in Mega-Blimps, I headed off to the local steam railway, hacking my way through the brambles and bracken to get to a point just beyond the station platform.

First up, we have the individual files for each of the three mics in each array. The files can be downloaded, and have been level-matched using the published sensitivities:

And here we have the files identically processed using the Harpex-X plug-in to stereo files as a coincident pair of hypercardioids at 127 degrees (i.e. equivalent to cardioid MS with a 50:50 balance between mid and side mics):

For some deeper bass, I then compared the two arrays back at home, starting the car to get some nice low-frequency content and, while at it, the usual Foley-like footsteps, gate openings etc. Again, here are the individual files for each of the three mics in each array:

And, again, here we have the files identically processed in Harpex-X to stereo files as a coincident pair of hypercardioids at 127 degrees (i.e. equivalent to cardioid MS with a 50:50 balance between mid and side mics):

The increased bass of the horizontal B-format array is more noticeable with the car engine than the steam locomotive, as you would expect, but both sets of recordings show broader differences between the two techniques. Some of these differences, mainly for the garden recording where there are close sounds, are an inevitable consequence of the spacing of the two rigs (about 1m apart), but there are very obvious differences that go beyond the fact that the two rigs could not be exactly coincidental. The localisation of even distant sounds is quite different. With the uncertainty of what is going on in the various DMS and B-format plug-ins, it is worth looking at a manual MS decode for the two pairs. For the DMS rig, standard MS was simply derived by using the fig 8 MKH 30 and the forward-facing cardioid MKH 8040 (i.e. ignoring the rear-facing cardioid). With the horizontal B-format all three mics were required, first creating a virtual cardioid from a 50:50 mix of the forward-rearward facing fig 8 MKH 8030 and the omni MKH 8020, and then using this as an MS pair with the sidewards-facing fig 8 MKH 8030. Here are the resultant two files for the steam locomotive departing recording:

These two MS pairs, decoded to LR, show very similar results to the DMS and horizontal B-format recordings output to stereo. In both cases the stereo field is rather different, with the B-format derived stereo having less stereo spread. You can hear this in the sample files, but, for a visualization, here are the goniometer plots showing the steam locomotive whistle at the beginning of the railway recording for both the DMS/horizontal B-format recordings output to stereo via Harpex-X and for the two MS equivalents that were derived manually. I chose the whistle as a short clear sound located well off to one side (the left).

Goniometer on train whistle for DMS (left) and horizontal B-format (right), both processed in Harpex-X and output to stereo (XY with hypercardioids at 127 degrees).
Goniometer on train whistle for MS using MKH 8040 and MKH 30 (left) and MKH 8020+MKH 8030 (creating virtual cardioid) and MKH 8030 – i.e. manually derived from horizontal B-format (right), decoded to stereo.

In both instances the whistle in the B-format example (or MS derived from combining the omni and forward-facing fig 8 in the B-format rig to create a virtual cardioid, then used with the side-facing fig 8) is rendered a little more centrally. Of course, this is very easy to adjust with DMS or B-format recordings, so, in some sense, is not a practical issue, but the point is that there is a difference and it isn’t simply the result of the behind-scenes mechanics of the conversion plug-in. This suggests that the mathematical combination of an omni and fig 8 to make a cardioid and the practical implementation of this don’t quite match, which is not entirely surprising: factoring in the different sensitivities of the two mics is an obvious source of possible error, changing the resultant polar pattern, although the audible differences suggest – at least to my ears – that perhaps there is more to this than that factor only.

Conclusions

If ever there was a misleading subheading, then this is it: ‘conclusions’ suggests something far more, er, conclusive than I can offer. First up among caveats, my end-use of either DMS or horizontal B-format is primarily for stereo output. Testing the different rigs with a decent, say, 5.1 system would be an interesting exercise, but at least the files above for individual mics will allow others to do that and see if they can draw any conclusions: indeed, that is the primary purpose of the blog post. The second significant caveat is the evident difficult in getting parity between rigs: using an all Sennheiser MKH approach helped, rather than the Schoeps to Sennhesier comparison, but the MKH 30 is not absolutely identical to an MKH 8030, and, of course, it meant that I had to use end-address cardioids for the DMS rig. I could have used an all Rycote mic approach (I have enough BD-10 fig 8s to achieve this), but the longer mic bodies would not have worked for horizontal B-format in the Mega-Blimp (even that has limits!). However, the previous tests comparing DMS with end-address vs side-address cardioids made me much more sanguine about such an approach. Hopefully something is left that, at the very least, provides readers with food for thought: perhaps even to compare horizontal B-format with DMS themselves.

From my own perspective, the ground I have covered in the tests, many necessarily not included here for reasons of space, for these three DMS blog-posts, along with the practicalities of rigging, the key conclusions I have drawn are:

i) use of end-address cardioids (or. at least, very small SDCs, such as MKH 8000 mics with MZLs or the diminutive Nevatons) for DMS has negligible impact on sound resulting from shadowing and, even, off-centre cardioids, especially compared to the impact of most windshields (OK, that’s not relevant to much indoor recording);

ii) there is, therefore, little reason in most circumstances to go for the more transparent approach of using side-address cardioids for DMS, although, of course, no reason to not do so if the mics are available (suitable windshield permitting if outdoors);

iii) unless the low-frequency response of an omni is critical, then there seems no advantage – at least with the mics and usage I have – of horizontal B-format over DMS.

So, going forward, although I plan to utilize both three-mic rigs in the future, I suspect that I will be using DMS more than horizontal B-format, not least as it allows a wider range of my mics to be used: most obviously, the Nevatons I have acquired recently. But equally, and with my predominantly stereo-focused approach in mind, I will continue to use MS far more (or, indeed, other stereo pairs). Certainly the flexibility of horizontal B-format or DMS in terms of selecting polar pattern or, less of an issue, steering the array in post, are insufficient grounds to merit their use for most cases where a stereo end-product is required. I’m very happy with knowing which way to point the mics (!) and happy enough, with MS, to select the mid-mic polar pattern that will suit the job best be that an omni, wide-cardioid, cardioid, supercardioid or fig 8. That said, I occasionally need to produce surround sound field recordings (e.g. recently a recording of the sea for the intro to a pipe-organ SACD – Organ Fantasy by Jean-Paul Imbert and his students) so horizontal B-format and DMS will continue to be part of my recording life.

Audio Gear

Sennheiser MKH 8030 part 4: comparing it to the MKH 30

May 7, 2024
Two mid-side pairs for size comparison: MKH 30 and MKH 50 (left) with MKH 8030 and MKH 8050 (right).

This is turning into something of a marathon, with the latest installment of the Sennheiser MKH 8030 fig 8 mic tests comprising a comparison with its older MKH counterpart: the MKH 30. The latter was introduced back in 1987 and is still in production: quite what Sennheiser’s plans are for the mic, now that the MKH 8030 is starting to appear in retailers, I simply do not know, but some of the other earlier MKH range have dropped out of production (MKH 20 omni and MKH 40 cardioid). Whether the MKH 30 continues to be made for years or not, recordists will wonder: just how does the new fig 8 compare? As with all the MKH 8000 series mics there are the obvious physical differences of size; the new series being modular; and the earlier range having built-in switchable high-pass filters and pre-attenuation (vs this only being available via the additional MZF 8000 module – now just updated to the MZF 8000 II). And then there is the extended high-frequency response of the MKH 8000 mics. But just how different do the two fig 8 mics sound? I was certainly interested in this question, and have been receiving queries from others similarly wondering, so armed with an MKH 30 and, to allow some MS comparisons, an MKH 50 (still in production, by the way) sent by the folks at Sennheiser, I set to for some comparisons.

The sound of silence

First off to compare is the sound of the two mics recording nothing: their self-noise. Both are specified as 13dBa, but self-noise rarely sounds the same between different makes or even ranges of mics and with the known very different frequency response above 20kHz, there was every reason to suspect there might be subtle differences as, indeed, there are between the other MKH 8000 polar patterns and their older MKH counterparts. So into the airing cupboard, under duvets and towels, went the mics and off went the electricity for my usual home-brewed and very much not laboratory conditions for comparing self-noise. As for the self-noise tests in part 1 of the MKH 8030 tests, I used a 100Hz high-pass filter since it was impossible to keep out the very low frequencies.

Here are the spectrum analyzer visualizations of the noise, with gain cranked up:

MKH 8030 with 100Hz high-pass filter: scale 100Hz to 48kHz.
MKH 30 with 100Hz high-pass filter: scale 100Hz to 48kHz.

As expected, the self-noise looks wildy different, but, of course, most of this is the increased self-noise in the MKH 8030 over 20kHz (i.e. above human hearing). In the audible part of the spectrum, the two are pretty comparable, although the gentle dip between 1kHz and 6kHz is a little deeper (by a couple of dB) with the MKH 30, which translates to the self-noise of the MKH 8030 being fractionally more noticeable. But we are splitting hairs here: both mics have remarkably low-self noise for SDC fig 8s and there is nothing of concern with the new design vs the older one on this front.

Bat recording at dusk in Guestwick Church.

Bats in the belfry…or not

One of the distinctive features of the MKH 8000 series is, indeed, the extended frequency range. You can see this in spectrograms of many a recording where frequencies above 20kHz are present: the specs cite a 50kHz upper limit vs 20kHz for the MKH 30. Taking this to extremes, I went with Norfolk-based ecologist, Danny Cotgrove, to Guestwick Church at dusk, comparing the MKH 8050/8030 and MKH 50/30 mics: obviously an unfair comparison, but it was an interesting evening nonetheless. I was particularly impressed by seeing Danny’s Batlogger M2 in action (evidently the right tool for the job), but that’s another story. There weren’t a lot (a ‘cauldron’?) of bats in action, but just the odd one: common pipistrelles and some Myotis bats (probably Natterer’s bats), apparently. Here are a few short clips, slowed down to 25%.

The bats are much clearer in the MKH 8050/8030 MS pair than in the MKH 50/30 pair, as expected, but the self-noise of the MKH 8000 mics at such high frequencies is distracting. Obviously, to get usable audio from such quiet ultrasonic sounds requires some hiss removal, so here is a very quick and dirty example using RX De-noise:

And here are the spectrograms for the two fig 8 mics:

Spectrograms of a clip of the bat recordings (as originally recorded), with MKH 8030 (left) and MKH 30 (right): the vertical axis extends to 96kHz, and the clearly visible (red) spikes of the bat sounds in the upper halves of the spectrograms range from around 46kHz to 76kHz.
Up in the belfry of Norwich Cathedral risking my eardrums…again.

At face value, the bat recording example might seem as if it leads to a dismal conclusion: i.e. the MKH 8030 has much higher frequency capability than the MKH 30, but the price of raised self-noise is too high to pay. But bear with me. With a touch of irony, I headed off to the cathedral belfry, not for more bats but for a (very) healthy signal of an audible sound with extended high frequency overtones: the bells, the bells! The spectrograms show that the sound extends above 48kHz, but of more use are the sound files.

Here we have the original unmodified (mono) recordings with the individual fig 8 mics:

And here we have the same two clips slowed down to 25% (just as I did for the bat recordings), as if playing around for sound design: reassuringly there is no distracting self-noise – a consequence of a healthy sound signal – and there is no need for noise removal.

So, yes, the MKH 8030, like its siblings in the same series, has extended high-frequency that can be useful and is something that the MKH 30 and its siblings don’t offer to this degree, but, with quiet signals, it will need much care and some de-noising. Whether or not this capability matters to the sound recordist is a different thing altogether: for many, if not most, a frequency response over 20kHz is simply not needed.

It’s all about that bass

Down at the other end of the frequency spectrum the specs for the two fig 8 suggest that the MKH 8030 goes a bit lower: the frequency response graph of the MKH 30 cuts off at 40Hz, though, so it is hard to tell from this how it compares with the MKH 8030 below this. Turning to my quick and dirty low-frequency source, I stuck the mics by the exhaust pipe of an idling car engine, and this showed that the MKH 8030 does indeed have more low end that its older counterpart.

Here are the sound files:

And here are the spectrum analyzer visualizations of the exhaust recordings:

MKH 8030 recording.
MKH 30 recording.

The most distinct feature is the level of the fundamental (26.4Hz), which is c.4.5dB louder with the MKH 8030 vs the MKH 30. This is not to say that the MKH 8030 oddly emphasizes bass: as we saw in part 1 of the MKH 8030 tests, similar tests with another car exhaust saw the MKH 8040 measure 9dB more than the MKH 8030 at the 22.5Hz fundamental. Now, just as with the high-frequency extended range, some may not find the increased low end of the MKH 8030 vs the MKH 30 especially useful, but I suspect many more will, for music recording and bass-heavy ambiences and sound effects amongst other things. I’m certainly one of the ones who is glad to have a bit better low-frequency performance. And if you don’t want it, its easy to roll off with a high-pass filter in your mixer/recorder or via the MZF 8000 ii filter module.

I suspect this view is getting rather familiar to some readers of this blog…

In the field

The robust and, above all, humidity-resistant nature of the RF-based MKH mics has made them favourites for recording in the field, be that production sound or field recording, so I moved on to record some ambiences. As usual, nothing very adventurous: you don’t need a long-haul flight and a rare species to test a mic in the field (though doubtless a rain forest would provide some nice humidity), so, as I have done so many times before, I ventured a few yards further down my drive from the car exhaust test to record the sounds of early May in my quiet Norfolk village street. Sorry if you are getting bored of listening to my village street, but cheer yourself up with the thought of how environmentally friendly this is! And it always gives a good mixture of sounds: birdsong, passing cars, the odd sound of a distant shotgun (or is it a bird-scarer?), and whatever the neighbours are up to: a bit of landscape gardening this time.

There are two sets of recordings: first off, we have the two fig 8s together, rigged with back-to-back clips in a single Rycote Cyclone, and facing the road;

Then, second, we have two separate windshields each containing a mid-side pair with each fig 8 paired with its super-cardioid sibling. Obviously the different qualities of the two mid-mics comes into play, but as an MS side mic is how most field recordists use the MKH 30 and how most will use the new MKH 8030.

Luke Chapman in his workshop, playing a bit of guitar into an MKH 30 and MKH 8030.

Down in the workshop

Moving inside again for some musical tests, I tootled down the back lanes to the workshop of woodcarver and musician Luke Chapman. Luke was happy to put down his chainsaw (well, actually he was re-spraying his Land Rover chassis when I arrived) to oblige again with some guitar playing, and the sets of recordings comprise mono recordings with the two fig 8s (which I rigged end-to-end, pointing at the twelfth fret from about 600mm/2ft away) and then mid-side recordings with the MKH 8050/8030 and MKH 50/30 pairs, a little further back (to get a bit more ambience into the recording: you can really hear the rooks outside trying to join in). There has been no processing (compression, equalization, addition of reverb etc.) of the recorded sound. The mono recordings with just the two fig 8 mics aimed towards the sound source are perhaps the most informative, although, again, the MS pairs show how the two mics sound with one of their respective siblings as the mid mic. I’m sure some will hear (or at least imagine they hear!) significant differences, but, to me at least, the two fig 8s sound remarkably similar.

Here are the two recordings of the fig 8s on their own:

And here are the recordings of the two MS pairs:

And here’s a video of the guitar test recordings – both the mono comparisons of the two fig 8s, and then the two mid-side rigs – cutting from one mic/pair to the other.

Conclusions

These few tests just skim the surface of comparisons between the MKH 30 and MKH 8030. With the other polar patterns of the two MKH ranges of mics, there have been recordists who prefer one to the other: or one vs its equivalent for a particular purpose. Evidently there are some subtle nuances and preferences, with these varying in relation to a wide gamut of sound sources, that are beyond the scope of the necessarily simple tests here: such discerning recordists will want to get both mics in their hands to compare them in their typical uses. But with that caveat, my experience of using the two mics is that the MKH 8030 occupies a similar position to the other MKH 8000 mics compared to their equivalents in the older MKH series: as such it lives up to the well-deserved reputation of the MKH 30. Just as with the other MKH 8000 series mics, it doesn’t render the older MKH fig 8 redundant: far from it. If you need a very low noise SDC fig 8 with demonstrable ability in high humidity and that sounds top class, then both of the Sennheiser fig 8s are likely to be at the top of your list: if you also want a very small SDC and one where there is a full range of mics in the same series currently in production, then, obviously, your choice out of the two will be the MKH 8030.