Browsing Tag

Luke Chapman

Audio Gear

Sennheiser MKH 8030 part 4: comparing it to the MKH 30

May 7, 2024
Two mid-side pairs for size comparison: MKH 30 and MKH 50 (left) with MKH 8030 and MKH 8050 (right).

This is turning into something of a marathon, with the latest installment of the Sennheiser MKH 8030 fig 8 mic tests comprising a comparison with its older MKH counterpart: the MKH 30. The latter was introduced back in 1987 and is still in production: quite what Sennheiser’s plans are for the mic, now that the MKH 8030 is starting to appear in retailers, I simply do not know, but some of the other earlier MKH range have dropped out of production (MKH 20 omni and MKH 40 cardioid). Whether the MKH 30 continues to be made for years or not, recordists will wonder: just how does the new fig 8 compare? As with all the MKH 8000 series mics there are the obvious physical differences of size; the new series being modular; and the earlier range having built-in switchable high-pass filters and pre-attenuation (vs this only being available via the additional MZF 8000 module – now just updated to the MZF 8000 II). And then there is the extended high-frequency response of the MKH 8000 mics. But just how different do the two fig 8 mics sound? I was certainly interested in this question, and have been receiving queries from others similarly wondering, so armed with an MKH 30 and, to allow some MS comparisons, an MKH 50 (still in production, by the way) sent by the folks at Sennheiser, I set to for some comparisons.

The sound of silence

First off to compare is the sound of the two mics recording nothing: their self-noise. Both are specified as 13dBa, but self-noise rarely sounds the same between different makes or even ranges of mics and with the known very different frequency response above 20kHz, there was every reason to suspect there might be subtle differences as, indeed, there are between the other MKH 8000 polar patterns and their older MKH counterparts. So into the airing cupboard, under duvets and towels, went the mics and off went the electricity for my usual home-brewed and very much not laboratory conditions for comparing self-noise. As for the self-noise tests in part 1 of the MKH 8030 tests, I used a 100Hz high-pass filter since it was impossible to keep out the very low frequencies.

Here are the spectrum analyzer visualizations of the noise, with gain cranked up:

MKH 8030 with 100Hz high-pass filter: scale 100Hz to 48kHz.
MKH 30 with 100Hz high-pass filter: scale 100Hz to 48kHz.

As expected, the self-noise looks wildy different, but, of course, most of this is the increased self-noise in the MKH 8030 over 20kHz (i.e. above human hearing). In the audible part of the spectrum, the two are pretty comparable, although the gentle dip between 1kHz and 6kHz is a little deeper (by a couple of dB) with the MKH 30, which translates to the self-noise of the MKH 8030 being fractionally more noticeable. But we are splitting hairs here: both mics have remarkably low-self noise for SDC fig 8s and there is nothing of concern with the new design vs the older one on this front.

Bat recording at dusk in Guestwick Church.

Bats in the belfry…or not

One of the distinctive features of the MKH 8000 series is, indeed, the extended frequency range. You can see this in spectrograms of many a recording where frequencies above 20kHz are present: the specs cite a 50kHz upper limit vs 20kHz for the MKH 30. Taking this to extremes, I went with Norfolk-based ecologist, Danny Cotgrove, to Guestwick Church at dusk, comparing the MKH 8050/8030 and MKH 50/30 mics: obviously an unfair comparison, but it was an interesting evening nonetheless. I was particularly impressed by seeing Danny’s Batlogger M2 in action (evidently the right tool for the job), but that’s another story. There weren’t a lot (a ‘cauldron’?) of bats in action, but just the odd one: common pipistrelles and some Myotis bats (probably Natterer’s bats), apparently. Here are a few short clips, slowed down to 25%.

The bats are much clearer in the MKH 8050/8030 MS pair than in the MKH 50/30 pair, as expected, but the self-noise of the MKH 8000 mics at such high frequencies is distracting. Obviously, to get usable audio from such quiet ultrasonic sounds requires some hiss removal, so here is a very quick and dirty example using RX De-noise:

And here are the spectrograms for the two fig 8 mics:

Spectrograms of a clip of the bat recordings (as originally recorded), with MKH 8030 (left) and MKH 30 (right): the vertical axis extends to 96kHz, and the clearly visible (red) spikes of the bat sounds in the upper halves of the spectrograms range from around 46kHz to 76kHz.
Up in the belfry of Norwich Cathedral risking my eardrums…again.

At face value, the bat recording example might seem as if it leads to a dismal conclusion: i.e. the MKH 8030 has much higher frequency capability than the MKH 30, but the price of raised self-noise is too high to pay. But bear with me. With a touch of irony, I headed off to the cathedral belfry, not for more bats but for a (very) healthy signal of an audible sound with extended high frequency overtones: the bells, the bells! The spectrograms show that the sound extends above 48kHz, but of more use are the sound files.

Here we have the original unmodified (mono) recordings with the individual fig 8 mics:

And here we have the same two clips slowed down to 25% (just as I did for the bat recordings), as if playing around for sound design: reassuringly there is no distracting self-noise – a consequence of a healthy sound signal – and there is no need for noise removal.

So, yes, the MKH 8030, like its siblings in the same series, has extended high-frequency that can be useful and is something that the MKH 30 and its siblings don’t offer to this degree, but, with quiet signals, it will need much care and some de-noising. Whether or not this capability matters to the sound recordist is a different thing altogether: for many, if not most, a frequency response over 20kHz is simply not needed.

It’s all about that bass

Down at the other end of the frequency spectrum the specs for the two fig 8 suggest that the MKH 8030 goes a bit lower: the frequency response graph of the MKH 30 cuts off at 40Hz, though, so it is hard to tell from this how it compares with the MKH 8030 below this. Turning to my quick and dirty low-frequency source, I stuck the mics by the exhaust pipe of an idling car engine, and this showed that the MKH 8030 does indeed have more low end that its older counterpart.

Here are the sound files:

And here are the spectrum analyzer visualizations of the exhaust recordings:

MKH 8030 recording.
MKH 30 recording.

The most distinct feature is the level of the fundamental (26.4Hz), which is c.4.5dB louder with the MKH 8030 vs the MKH 30. This is not to say that the MKH 8030 oddly emphasizes bass: as we saw in part 1 of the MKH 8030 tests, similar tests with another car exhaust saw the MKH 8040 measure 9dB more than the MKH 8030 at the 22.5Hz fundamental. Now, just as with the high-frequency extended range, some may not find the increased low end of the MKH 8030 vs the MKH 30 especially useful, but I suspect many more will, for music recording and bass-heavy ambiences and sound effects amongst other things. I’m certainly one of the ones who is glad to have a bit better low-frequency performance. And if you don’t want it, its easy to roll off with a high-pass filter in your mixer/recorder or via the MZF 8000 ii filter module.

I suspect this view is getting rather familiar to some readers of this blog…

In the field

The robust and, above all, humidity-resistant nature of the RF-based MKH mics has made them favourites for recording in the field, be that production sound or field recording, so I moved on to record some ambiences. As usual, nothing very adventurous: you don’t need a long-haul flight and a rare species to test a mic in the field (though doubtless a rain forest would provide some nice humidity), so, as I have done so many times before, I ventured a few yards further down my drive from the car exhaust test to record the sounds of early May in my quiet Norfolk village street. Sorry if you are getting bored of listening to my village street, but cheer yourself up with the thought of how environmentally friendly this is! And it always gives a good mixture of sounds: birdsong, passing cars, the odd sound of a distant shotgun (or is it a bird-scarer?), and whatever the neighbours are up to: a bit of landscape gardening this time.

There are two sets of recordings: first off, we have the two fig 8s together, rigged with back-to-back clips in a single Rycote Cyclone, and facing the road;

Then, second, we have two separate windshields each containing a mid-side pair with each fig 8 paired with its super-cardioid sibling. Obviously the different qualities of the two mid-mics comes into play, but as an MS side mic is how most field recordists use the MKH 30 and how most will use the new MKH 8030.

Luke Chapman in his workshop, playing a bit of guitar into an MKH 30 and MKH 8030.

Down in the workshop

Moving inside again for some musical tests, I tootled down the back lanes to the workshop of woodcarver and musician Luke Chapman. Luke was happy to put down his chainsaw (well, actually he was re-spraying his Land Rover chassis when I arrived) to oblige again with some guitar playing, and the sets of recordings comprise mono recordings with the two fig 8s (which I rigged end-to-end, pointing at the twelfth fret from about 600mm/2ft away) and then mid-side recordings with the MKH 8050/8030 and MKH 50/30 pairs, a little further back (to get a bit more ambience into the recording: you can really hear the rooks outside trying to join in). There has been no processing (compression, equalization, addition of reverb etc.) of the recorded sound. The mono recordings with just the two fig 8 mics aimed towards the sound source are perhaps the most informative, although, again, the MS pairs show how the two mics sound with one of their respective siblings as the mid mic. I’m sure some will hear (or at least imagine they hear!) significant differences, but, to me at least, the two fig 8s sound remarkably similar.

Here are the two recordings of the fig 8s on their own:

And here are the recordings of the two MS pairs:

And here’s a video of the guitar test recordings – both the mono comparisons of the two fig 8s, and then the two mid-side rigs – cutting from one mic/pair to the other.

Conclusions

These few tests just skim the surface of comparisons between the MKH 30 and MKH 8030. With the other polar patterns of the two MKH ranges of mics, there have been recordists who prefer one to the other: or one vs its equivalent for a particular purpose. Evidently there are some subtle nuances and preferences, with these varying in relation to a wide gamut of sound sources, that are beyond the scope of the necessarily simple tests here: such discerning recordists will want to get both mics in their hands to compare them in their typical uses. But with that caveat, my experience of using the two mics is that the MKH 8030 occupies a similar position to the other MKH 8000 mics compared to their equivalents in the older MKH series: as such it lives up to the well-deserved reputation of the MKH 30. Just as with the other MKH 8000 series mics, it doesn’t render the older MKH fig 8 redundant: far from it. If you need a very low noise SDC fig 8 with demonstrable ability in high humidity and that sounds top class, then both of the Sennheiser fig 8s are likely to be at the top of your list: if you also want a very small SDC and one where there is a full range of mics in the same series currently in production, then, obviously, your choice out of the two will be the MKH 8030.

Audio Gear

Variation on double mid-side recording

November 7, 2021
AKG Blueline mics used for these tests, top to bottom: CK93 (hypercardioid), CK94 (fig 8) and CK92 (omni): initial rig.
Second setup, bringing the three mics closer together (5mm apart): physically more stable, mics further from edge of the blimp, and fewer phasing issues.

Mid-side recording is a familiar technique to most sound recordists: a coincident stereo pair that is flexible and handy (not least as it can fit in a blimp or windjammer more easily than most pairs). I’ve written previous posts about my mid-side rigs, both for LDC mics and SDC mics. Double mid-side, where the fig 8 side mic is used by two mid mics – one facing forward and one facing backwards – is less used, but still well known, mainly by those recording surround sound. But, of course, the fig 8 side mic can also be shared with two (roughly) forward-facing mid mics: say one pointing up to the mouth of a singer-songwriter and one down to their guitar. Matrix the two mid-side pairs and you have stereo for both vocal and guitar, with reasonably little spill, and – with all three mics coincident – no phasing issues. Hugh Robjohns wrote an article for Sound On Sound about this use a few years back.

But there is another use for double mid-side with the two mid mics facing forward, and one that is rarely used or described: that’s where the two mid mics are pointing the same way but have different polar patterns. Using, say, omni and hypercardioid mid mics, you can matrix either with the side mic and get omni or hypercardioid mid side or matrix both and mix and you can get all the polar patterns in between for your mid mic: say, wide cardioid or cardioid as well as the omni and hypercardioid. This flexibility in polar pattern is quite separate from the familiar aspect of mid-side recordings, where you can vary the width of the stereo image by changing the proportion of mid to side mic: with this arrangement you get both stereo width and polar pattern flexibility in post, and – if using SDC mics – all with a very compact three-channel rig. As you can see, with a few Rycote back-to-back clips you can even fit it in a fairly standard 100mm diameter blimp.

Here’s a vocal test with a group (Norfolk’s raucous folk band, Rattlebox) arranged in a semi-circle around the mics outside on a very windy day (about 20 mph wind), singing Dick Shannon’s ‘The Auld Triangle’: the test was in part to see if the mics would be OK stacked in a standard (in this case Rode) blimp in reasonable wind (the top and bottom mics were nearer to the edge of the blimp than is ideal: at this stage I hadn’t come up with the more compact triangular array). The configuration needs the fig 8 centrally, which is good as fig 8 mics are the most sensitive to wind. The three mics had their 75Hz low-cut filters engaged to counter the wind noise. I matrixed, or decoded, each mid-side pair, so in the video you hear these on their own and then mixed 50:50. In the video, I call this mix of the two pairs a ‘virtual cardioid mid mic’) as it isn’t far off mid side with a cardioid mid mic: of course, a seamless range of possibilities from omni to hypercardioid is possible.

And here’s another test, this time with a guitarist (Luke Chapman) in his workshop (by day Luke is a woodcarver), with the same matrixing/decoding options. With no wind to contend with, the three mics have no low-cut filters engaged. Of course, the smaller sound source of a guitar means the changes in mid-mic polar pattern are fairly subtle.

How best then to process the three channels of audio in post? Well there might appear to be three options: 1) mix the two mid mics first, then decode to LR stereo as per normal mid-side; 2) decode each mid-side pair then mix the resultant LR stereo files; and 3) decode one mid-side pair then mix in the additional mid mic.

A bit of maths shows the first two are identical:

Mixing the mid mics first:
M = μM1 + λM2
L= μM1 + λM2+S
R= μM1 + λM2-S

Decoding each mid-side pair then mixing:
L1=M1+S L2=M2+S
R1=M1-S R2=M2-S
L=μL1+λL2
= μ(M1+S)+ λ(M2+S)
= μM1 + λM2+S

Decoding one mid-side pair then adding the M2 mic (centrally) to the stereo pair, however, gives a different result (as, indeed, you might conclude intuitively when thinking about it):
L = μ(M1+S)+ λM2
= μM1 + λM2+μS

So avoid this third option.

[NB I’ve just done the L channels in the second and third examples, to reduce the off-putting maths…]

In my case, I’ve gone for the second option as it is difficult to determine what mix of mid mics you might want – i.e. what mid-mic virtual polar pattern – without hearing the stereo sound. I must now set up my DAW (Reaper) so that raising one stereo channel reduces the other by the same amount to make assessing the balance/mix easier.

In terms of monitoring when recording you can either just listen to the channels in mono or, with any reasonable recorder, send two of the channels (the fig 8 and, say, the hypercardioid) to be decoded in the headphone monitoring or in the LR mix (either are possible on my Sound Devices MixPre-3): in this way you get confirmation that at least one of the stereo pairs sounds as you want it. With time on your hands, you can, of course, check the other pair in LR stereo too.

UPDATE (9.11.2021). By request I’ve recorded some ambiences (just my quiet Norfolk village street from my garden) with this rig and have uploaded the iso tracks (AKG CK92 omni; AKG CK93 hypercardioid; and AKG CK94 fig 8), the two separate MS recordings (as LR stereo) and the combined MMS recording (giving something akin to cardioid MS). These recordings were made with my modified array (i.e. the mics set in a more compact triangular arrangement, each only 5mm apart from the others).

Audio Gear Audio Projects

Something (not so) nasty in the woodshed: fun with figure of eights

January 7, 2021

It has been a drawn-out project, what with Covid-19 lockdowns and restrictions, but currently I’m midway through recording an acoustic album for Norfolk singer-songwriter Luke Chapman. It’s a long way from some of Luke’s other musical pursuits, such as the stoner grunge rock Rolodex of Gods. After an initial session at Oulton Chapel (lovely acoustics), we have since been using the woodstore part of his workshop on the edge of the Barningham Hall estate: by day Luke is a woodcarver.

With a sitting position and songs with a huge dynamic range, Luke’s voice and guitar playing need the mics to give as much separation as possible between the tracks. Early tests included using a ribbon mic on his vocals (a NoHype Audio LRM-V), but I have since been using three Rode NT2a mics, all in figure-of-eight pattern so that the nulls are used to great effect to cut out spill as much as possible: the guitar mics – a stereo pair – are parallel at 300mm spacing, one aimed around the 12th fret and one towards the bridge. The results are sounding good (to our ears): the Rode NT2a is often underrated, but the HF1 capsule (also used in the Rode K2 tube mic) is quite different from the harsher capsule of the Rode NT1a and is a pretty neutral beast. And so quiet (7dBA) that you can hear the rats running around in the roof as we record. The three mics are fed through to the ‘control room’ (the main workshop) to a Sound Devices MixPre-3: simple, but effective.

I’ll post more – with some audio – as the project continues.